Math 180 Exam 1 Review

Daniel McLaury

1. An object is launched into the air. Its position at time t is given by $s(t)=-5 t^{2}+5 t+10$.
(a) Find the average velocity on the interval [1, 2].
(b) Find the average velocity on the interval $[0, h]$. Simplify your answer.
(c) Find the instantaneous velocity at $t=0$ using the definition of the derivative.
(d) Write the equation of the tangent line to the graph of $s(t)$ through the point $(0,10)$.
2. (Briggs and Cochran, Exercise 2.2.7) Use the supplied graph of $h(x)$ to determine the following.
(a) $h(2)$
(b) $\lim _{x \rightarrow 2} h(x)$
(c) $h(4)$
(d) $\lim _{x \rightarrow 4} h(x)$
(e) Is h continuous at $x=2$?

(f) How about at $x=4$?
3. Calculate each of the following limits if it exists.
(a) $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-4 x-5}$
(b) $\lim _{x \rightarrow-1^{+}} \frac{x-5}{x^{2}-4 x-5}$
(c) $\lim _{x \rightarrow 0} \frac{2 x}{\tan (3 x)}$
4. Consider the function $f(x)=\frac{\sqrt{3 x^{2}+1}-2}{1-x}$. Calculate the following:
(a) $\lim _{x \rightarrow-\infty} f(x)$
(b) $\lim _{x \rightarrow 0} f(x)$
(c) $\lim _{x \rightarrow 1} f(x)$
(d) $\lim _{x \rightarrow \infty} f(x)$
5. Prove, using the formal definition of limits, that $\lim _{x \rightarrow 1} 2 x-3=-1$.
6. Calculate the derivatives of the following functions:
(a) $\frac{5}{1+e^{-3 t}}$
(b) $\frac{1}{\sqrt{\pi}} e^{-x^{2}}$
(c) $x^{5} \sin (x)+x^{4} \cos (x)+1$
(d) $\sqrt{1+\sin ^{2}(x)}$
7. On which intervals are the following functions continuous?
(a) $\frac{x}{x^{2}+1}$
(b) $\sqrt{3 x-1}$
(c) $\frac{x+1}{x^{2}+3 x+2}$
8. A piñata hangs from a spring. Its height at time t given by $y(t)=15 \sin (2 \pi t)+20$.
(a) Find the velocity and acceleration functions for the piñata.
(b) What are the height, velocity, and acceleration of the piñata at $t=3$?
9. Consider the function $f(t)=t^{4}-5 t^{3}+2$.
(a) Show that f has a root between $t=0$ and $t=1$. Justify your answer.
(b) Improve upon this result by finding an interval of length $\frac{1}{4}$ on which f has a root. (Remember no calculators!)
